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Abstract 
 

With the rapid development of information technology, it is now possible to analyze the spatial 

patterns of cultivated land and its evolution by combining GIS, geostatistical analysis models 

and spatiotemporal big data for the dynamic monitoring and management of cultivated land 

resources. The spatial pattern of cultivated land and its evolutionary patterns in Luoyang City, 

China from 2009 to 2019 were analyzed using spatial autocorrelation and spatial 

autoregressive models on the basis of GIS technology. It was found that: (1) the area of 

cultivated land in Luoyang decreased then increased between 2009 and 2019, with an overall 

increase of 0.43% in 2019 compared to 2009, with cultivated land being dominant in the 

overall landscape of Luoyang; (2) cultivated land holdings in Luoyang are highly spatially 

autocorrelated, with the ‘high-high’-type area being concentrated in the border area directly 

north and northeast of Luoyang, while the ‘low-low’-type area is concentrated in the south and 

in the municipal area of Luoyang, and being heavily influenced by topography and 

urbanization. The expansion determined during the study period mainly took place in the 

Luoyang City, with most of it being transferred from the ‘high-low’-type area; (3)  elevation, 

slope and industrial output values from analysis of the bivariate spatial autocorrelation and 

spatial autoregressive models of the drivers all had significant effects on the amount of 

cultivated land holdings, with elevation having a positive effect, and slope and industrial 

output having a negative effect. 
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1. Introduction 

With the development of China’s new type of urbanization and industrialization, phenomena 

such as the occupation of cities and towns, internal agricultural restructuring, the ecological 

restoration of cultivated land to forest and grassland, and destruction by natural disasters have 

become increasingly prominent, resulting in a continuous reduction in cultivated land 

resources, a gradual decline in the quality of cultivated land, and a decrease in the ecological 

functions of cultivated land [1-3]. A serious shortage of reserve cultivated land resources in 

China has further exacerbated the contradictions between population growth, resource 

utilization and cultivated land protection, and the problem of how to coordinate these three 

contradictions has become increasingly prominent, making cultivated land resources an 

important strategic resource for national food security, ecological and environmental 

protection, and social stability. Especially since the 18th National Congress of the Communist 

Party of China(CPC), the CPC Central Committee has attached great importance to the 

protection of cultivated land, establishing a new pattern of cultivated land protection based on 

the ‘trinity’ of quantity, quality and ecology, and building a new mechanism for cultivated 

land protection that combines control, construction and incentives [4-5]. 

Due to the frequency and complexity of transfer between cultivated and other land types, 

changes in cultivated land have been a hot topic in academic studies, with the main research 

topics including trends and driving mechanisms [6-7], methods of cultivated land conservation 

and management [8-9], quality assessment, and ecological responses [10-11]. In particular, 

certain researchers have revealed the spatial and temporal changes in regional cultivated land 

resources, which are of great significance for promoting the sustainable use of cultivated land 

and safeguarding food security in China. 

Previous studies on the spatial patterns of cultivated land have mainly focused on the 

temporal and spatial changes in cultivated land [12], the changes in spatial patterns of 

cultivated land [13], the driving mechanisms of cultivated land changes [14], and the 

simulation and prediction of cultivated land changes [15]. The topic has gradually transitioned 

from the macro level of global [16], continental, national, and regional to the meso level of 

watershed, county and city, with different time spans. Most of these studies are based on 

independent evaluation units, using traditional mathematical statistical methods 

[17],geographic statistical methods and spatial analysis [18], all of which have yielded useful 

results and contributed to the study of the spatial evolution of cultivated land. Most of these 

studies have dealt with the spatial distribution of cultivated land at the macro level, however, 

with few studies focusing on the spatial correlation of cultivated land and the dynamically 

changing spatial pattern of cultivated land. The spatial autocorrelation method is able to reflect 

the distribution characteristics of spatial variables and their influence on neighborhoods [19]. 

In recent years, there have been several achievements in the study of the spatial pattern of 

cultivated land [20-22]. 

Over many years, scholars at home and abroad have extensively discussed the 

mechanisms that influence changes in cultivated land in the process of rapid urbanization [23-

25]. Studies have shown that there is an intrinsic relationship between changes in cultivated 

land resources and several factors, such as elevation, slope, topography, per-capita gross 

domestic product, roads, level of comprehensive socioeconomic development (level of 

economic development, population development, urbanization and industrialization), 

agricultural science and technology innovation and structure, spatial accessibility, level of 

transportation development, and cultivated land and ecological protection policies [26]. In 

terms of the methods used in analyzing the influencing factors of cultivated land conversion, 
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previous research has shown a trend from simple to complex, from correlation analysis to 

mechanistic explanation. Traditional correlation, principal component and factor analyses are 

gradually being replaced by regression and cluster analyses, while adaptive intelligence 

methods, such as artificial neural networks, are gradually being used to study the influencing 

mechanism of cultivated land change. Anselin has argued that almost all spatial data are 

spatially correlated or spatially dependent [27], but these methods ignore the influences 

themselves, and the correlations between them and the cultivated land, which contradicts the 

assumption that the variables in the correlation analysis are independent of each other, such is 

the classic linear regression model. However, the spatial autoregressive model modifies this 

problem by including the spatial dependence into the regression equation, which makes up for 

the defects of the classical metrological method in the statistical analysis of spatial data and is 

more in line with the actual needs. 

To address the shortcomings of current research, this work used Luoyang––a new sub-

center city in China–as the study area, from the perspective of spatial clustering and 

dependency. The study was based on spatiotemporal big data of cultivated land use in Luoyang 

for the three years 2009, 2014 and 2019. A spatial autocorrelation model was used to analyze 

the evolution of the spatial pattern of cultivated land at the township scale in Luoyang, and the 

spatial dependence between cultivated land and influencing factors was selected as an example. 

Finally, a spatial autoregressive model was chosen to analyze the driving mechanism of the 

spatial change of cultivated land in Luoyang, in order to provide support for the coordination 

of urbanization and cultivated land protection in the new era, and the scientific preparation of 

national land and spatial planning. 

2. Data and Methods 

2.1 Overview of the Study Area and Data Acquisition 

2.1.1 Overview of the Study Area  

The chosen study area was Luoyang City, in the western part of Henan Province in Central 

China. Luoyang City spans the northern and southern banks of the middle and lower 

reaches of the Yellow River, located at longitude 112°16’~112°37’E and latitude 

34°32’~34°45’N. The total area of the city is 15,230 km2, with cultivated land accounting 

for 32.18% of the total area. Luoyang City is in the transition from the second to the third 

terrain of China, and its terrain structure is diversified. Mountains, hills and plains 

dominate the its topography of Luoyang, with mountains accounting for 45.51%, hills 

accounting for 40.73% and plains accounting for 13.8%. The city of Luoyang is also rich 

in water, mineral and tourism resources. The location of Luoyang City is shown in Fig. 1. 
 

 

Fig. 1.  Location of Luoyang City 
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2.1.2 Data Source and Preprocessing 

The main data for this study were obtained from the Land Survey Change Database for the 

years 2009, 2014 and 2019. The land classes in the database are based on the second-level 

standard of the Land Use Status Classification (GB/T 21010-2007) [28]. In order to facilitate 

analysis, the data needed to be preprocessed, including merging the element classes, filtering 

out the cultivated land patches and obtaining the base data for the cultivated land patches for 

the three years under examination(Fig. 2A-C). Following this, the most basic township-

division data were merged into the county-level administrative-division data (see Fig. 2D, E). 

The DEM data came from the Shuttle Radar Topography Mission dataset, provided by the 

International Scientific Data Service Platform of the Computer Network Information Center, 

Chinese Academy of Sciences (http://datamirror.csdb.cn). Calculate the average elevation data 

for each township using the Grid Calculator in the ArcGIS Spatial Analysis module (Fig. 2F). 

The DEM data were converted to cover the entire area of Luoyang City using the ArcGIS tools, 

and obtain the average slope data for each township (Fig. 2G). Data on the resident population 

and industrial output value were obtained from the 2009, 2015 and 2020 editions of the 

Statistical Yearbook of Luoyang City and the Statistical Yearbook of China’s Townships (Fig. 

2H, I). The obtained impact factor data were spatially connected to each township unit in order 

to obtain the basic analysis layer data. 
 

 

 
Fig. 2.  Partial Temporal and Spatial Data Maps 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                            771 

 

 

2.2 Research Methodology 

2.2.1 Land-use Transition Matrix 

The land-use transfer matrix is a mathematical method extended from the quantitative 

description of the system state and state transfer in system analysis. In the transfer matrix 

(Table 1), A1–An is the land-use type. Snn represents the transformed area of the two land 

classes in the corresponding year. Pn+ - P+n represents the change in area from P+n to Pn+ 

for each land use type during T1-T2 [29]. 
 

Table 1. Land-use Transfer Matrix 

 
 

 

From the transfer matrix, the area changes in various land classes can be derived. In this 

study, we used the Spatial Analyst tool in ArcGIS to process the land-use data of Luoyang 

City in 2009, 2014 and 2019 in order to obtain the land-use transfer matrix. From the obtained 

matrix, the area of cultivated land converted to urban construction land, forestland and other 

land categories became apparent, as well as the area of other land categories converted to 

cultivated land between 2009 and 2014 and 2014 and 2019. From these results, it was possible 

to visualize the compensation for the occupation of cultivated land and its dynamics. 

2.2.2 Spatial Autocorrelation Analysis 

Spatial autocorrelation analysis is a method used to check whether observations with spatially-

located elements correlate with observations at neighboring spatial points. The determination 

of spatial weight is the basis of spatial correlation analysis. Since the cultivated land is 

continuously distributed, the Queen adjacency, which considers both the common vertex and 

the common edge, is chosen in this paper to determine the weight matrix. There are many 

measures of spatial autocorrelation, with the most common test to quantify this aggregation 

property being Moran’s I. Spatial autocorrelation can be global or local. Moran’s I can measure 

either global or local spatial correlations. Calculation of the global Moran’s I is shown in (1). 
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where n is the number of spatially-observed objects in the study area, Xi and Xj are the 

values of the i-th and j-th observations in space, respectively, X is the average of all 

observations of the object, and Wij is the spatial weight matrix that represents the adjacency 

between the i-th and j-th observations at a spatial location. Moran’s I has a value in the range 

[-1,1]. At a specific significance level, if Moran’s I>0, there is a spatial positive correlation 

between the observed objects, which is characterized by the clustering of high or low values 

of the object’s attributes. If Moran’s I<0, the opposite is true. If Moran’s I=0, this means that 

the values of the observed objects are randomly distributed and do not have spatial correlation. 

Local spatial autocorrelation analysis focuses on the degree of correlation between an 

attribute value on a regional unit and its neighborhood unit in local space. The calculation 

formula for local Moran’s I is shown in (2), with the meaning of each variable in the equation 

being the same as that in (1). 
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(2) 

 

Here, townships were used as the basic unit for calculating the quantity of cultivated land 

holdings in each township in Luoyang City. The Geoda software platform was then used to 

analyze the spatial autocorrelation and spatial aggregation characteristics of the cultivated land 

holdings from both the global and local aspects. 

2.2.3 Spatial autoregression models 

The general form of the spatial regression model is shown in (3).  

 
 

 ε + λW2 =μ 

μ  + βX + ρW1 = Y
 

 

(3) 

   

where Y is the dependent variable, X is the explanatory variable, β represents the spatial 

regression coefficient of the explanatory variables, μ is the error term, ε is white noise, spatial 

weight matrices for W1 and W2 reflecting the spatial trend of the dependent variable and 

residuals, respectively. ρ is the coefficient of the spatial hysteresis term, λ is the coefficient of 

the spatial error coefficient. 

According to the values of ρ and λ, the spatial regression model can be divided into three 

sub-models: (1) an ordinary linear regression model is obtained when ρ=0, λ=0, indicating that 

the model is not affected by spatial characteristics. This model requires the data in the study 

area to be independent and evenly distributed; (2) a spatial lag model (SLM) is obtained when 

ρ≠0,λ= 0. The model should be based on spatial autocorrelation; and (3) a spatial error model 

(SEM) is obtained when ρ=0，λ≠0. The sub-model was evaluated based on indicators such as 

whether the residual was independent, and whether the Lagrange multiplier (LM) and the 

robust LM had statistical significance. In fact, research data often have spatial autocorrelation. 

The spatial autoregressive model (SLM and SEM) incorporated this point into the regression 

equation, which makes up for the shortcomings of the classical measurement method in the 

statistics of spatial data.  
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3. Results and Analysis 

3.1 Cultivated Land Transfer Analysis 

The dynamic change in cultivated land is not only manifested by the increase and decrease in 

spatial orientation, but also by the mutual transformation with other geotypes. This can be 

visualized in terms of the decreases and interconversions that have a strong influence on 

cultivated land, which help to provide an understanding of its evolutionary flow. For this work, 

the raster data for 2009, 2014 and 2019 were obtained by preliminary processing in ArcGIS,  

in order to obtain the transfer matrices between cropland and other landscape types for 2009–

2014 and 2014–2019, using the Area Tabulation tool in Spatial Analysis, and   shown in Fig. 

3 and Fig. 4. 

3.1.1 Analysis of Cultivated Land Transfer Direction from 2009 to 2014 

 

 
Fig. 3.  Transfer Ratio of Cultivated Land in Luoyang City from 2009 to 2014 

 

Total of 10,708.63 hm2 of cultivated land was transferred out and 8953.81 hm2 was 

transferred in during the period 2009–2014, meaning a greater amount of cultivated land was 

transferred out, resulting in an actual decrease of 1754.82 hm2 in the cultivated land area. 

As can be seen from Fig. 3, the main transfer out of cultivated land was to urban, 

industrial and mining land, with 8327.58 hm2 or 77.77% of the total, followed by transport 

land (1771.95 hm2) and other land (531.42 hm2). Of the cultivated land, 46.51% came from 

grassland. Of the cropland, 17.83% was transferred from water bodies and water facilities, 

with a significant proportion of the remaining cropland coming from forestland (11.02%), 

other land (10.82%), urban, industrial and mining land (9.55%) and garden land (4.27%). The 

combined transfer of cultivated land into and out of the countryside indicates that the amount 

of land transferred out of the countryside in 2009–2014 is much greater than the amount of 

land transferred in, suggesting that urban and industrial development is an important factor in 

the reduction of cultivated land.   
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3.1.2 Analysis of Cultivated Land Transferdirection from 2014 to 2019 

 

 
Fig. 4.  Transfer Ratio of Cultivated Land in Luoyang City from 2009 to 2014 

 

Total amount of cultivated land transferred out of the city of Luoyang in 2014–2019 was 

5691.93 hm2, while the total amount transferred in was 9549.98 hm2, which is a decrease of 

46.84% in the amount transferred out and an increase of 6.66% in the amount transferred in 

compared to the previous period, resulting in a net increase of 3858.05 hm2 in cultivated land 

area during this period. As can be seen from Fig. 4, the greatest proportion of cultivated land 

transferred out of Luoyang City in 2014–2019 continued to be urban, industrial and mining 

land, accounting for 68.95% of the total––a decrease of 8.82% compared to the previous 

period––with transport land still in second place, accounting for 18.17%, up 1.62%, and other 

land accounting for 12.11%, a very significant increase compared to the previous period. This 

is significant, indicating that, in some areas, formerly cultivated land has been converted into 

unused land, agricultural land for facilities, or unused land, such as sand or bare land. This 

suggests that there is still much room for improvement in Luoyang City in terms of protecting 

the quantity and quality of cultivated land.  

In terms of the amount of difference in the area of cultivated land transferred into and out 

of cultivated land, urban, industrial and mining land, transport land and other land are the three 

major categories of land that have contributed to the decrease in cultivated land, this is due to 

the development of urbanization, more and more arable land is occupied in the early period. 

In the later period, it paid more attention to the new development concept and promoted the 

reform while taking into account the economy, thus reducing the adverse impact on the 

cultivated land. Grassland, woodland, water and water facilities land and parkland are the 

sources of the increase in cultivated land, in that order. Compared to 2009–2014, the biggest 

difference is that other land has been changed from a source of cultivated land transfer to an 

object of cultivated land transfer, which is a side effect of the fact that land is not used in the 

most efficient way in urban development and construction, that construction land needs to be 

planned more rationally, and that land improvement projects should play a greater role. 

3.2 Spatial Autocorrelation Analysis 

3.2.1 Analysis of the Global Spatial Autocorrelation Results 

In order to study the spatial distribution of cultivated land holdings in Luoyang City, a spatial 

weight matrix was determined using townships as units and the queen neighborhood approach. 
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The global Moran’s I values for cultivated land holdings in 2009, 2014 and 2019 were 

calculated using ArcGIS and Geoda to respectively test the significance of the Moran’s index 

values (Table 2) and to obtain the corresponding Moran’s scatter plots (Fig. 5). When carrying 

out global spatial autocorrelation analysis, it is important to note that, after calculating Moran’s 

I, the level of significance is also checked, often using the z-value and p-value. Most tests 

begin with a confidence level, which is then judged on the basis of the z-value and p-value of 

the results of the analyses, commonly using confidence levels of 90%, 95% or 99%.  

 
Table 2. Global Moran’s I Values and Test of Cultivated Land Quantity in Luoyang City 

Year Moran's I z-value p-value Threshold value(α=0.01) 

2009 0.7040 14.2589 0.0001 2.58 

2014 0.7133 14.3281 0.0001 2.58 

2019 0.7377 14.9201 0.0001 2.58 

 

 
              

 

 
        (c) 2019 

Fig. 5.  Cultivated Land Quantity Moran Scatter Plot in Luoyang City 

 

It can be seen from Fig. 5 that the Moran’s I of cultivated land holdings in Luoyang in 

2009, 2014 and 2019 are 0.7040, 0.7133 and 0.7376, respectively, with the z-values all greater 

than the critical value of 2.58, which passes the significance test of α=0.01, indicating the 

spatial existence of cultivated land holdings in Luoyang City. The correlation and three years’ 

of values of the Moran index are all greater than 0.5, indicating that cultivated land holdings 

at the township scale in Luoyang City are spatially significantly correlated, showing clustering 

of high or low values.  

 

(a) 2009 (b) 2014 
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From the magnitude of the Moran’s I values, Moran’s I(2019)>Moran’s I(2014)>Moran’s 

I(2009), indicating that, at a 95% confidence level, the cultivated land in Luoyang is the degree 

of spatial correlation of the holdings has increased year on year, indicating an increasingly 

strong clustering of high or low values of cultivated land holdings in various townships in 

Luoyang City, with the 2019 cultivated land holdings (Moran’s I ≈0.7377) showing the 

strongest positive spatial correlation in recent years. 

3.2.2 Analysis of the Local Spatial Autocorrelation Results 

Local spatial autocorrelation analysis is concerned with the spatial correlation between 

specific units and their neighboring units, which can effectively reflect the spatial differences 

caused by spatial autocorrelation between different townships. In order to further study the 

spatial clustering areas and characteristics of cultivated land holdings in Luoyang City, a local 

spatial autocorrelation analysis of cultivated land holdings in 2009, 2014 and 2019 was 

conducted, with the township as the unit. This provided the LISA clustering diagram shown 

in Fig. 6, which indicates the spatial differentiation in the distribution of cultivated land 

holdings more visually. ‘Low-low’ means that the areas with low cultivated land holdings are 

surrounded by towns with similarly low holdings. ‘Low-high’ and ‘high-low’ suggest a 

negative correlation in the spatial distribution of cultivated land holdings, with low-high 

meaning that towns with low cultivated land holdings are surrounded by towns with higher 

holdings, and high-low meaning the opposite. ‘Not significant’ means that the spatial 

correlation is not significant. 

 

 

           

 (a) 2009                                    (b) 2014                                        (c) 2019 
Fig. 6.  LISA Map of Cultivated Land Holdings in Luoyang City 

 

The result shows that there is a dynamic balance in the amount of cultivated land holdings 

in Luoyang City between 2009 and 2019 and, overall, the distribution of the various types of 

clusters is basically consistent. Of these, approximately 26.25% of the total number of towns 

have a high-high type of cultivated land holdings, most of these being clustered in the northern 

and eastern parts of Luoyang City, and showing a distribution around the Luoyang City area. 
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It can be observed from Fig. 6 that the overall change in townships of the high type is not 

obvious, with only the spatial autocorrelation of individual townships having changed in 

2009–2014, cultivated land in the border area between the counties of Songxian and Yichuan 

has been increasing. No significant change from 2014 to 2019. 

Depending on the terrain, the level of modernization and other factors, most of the towns 

with a low-low type of cultivated land holdings in Luoyang City are clustered in the 

southwestern mountains and in the urban areas. The number of towns and villages of low-low 

type has been on an increasing trend from 2009 to 2019, increasing from 25% to 29% of the 

total. From 2009 to 2014, the vicinity of the municipality changed from the not significant 

type or high-low type to the low-low type, indicating that the urban area was expanding at its 

periphery during this period, occupying more and more cultivated land.  

The low-high type indicates local spatial variation within an area, mainly characterized 

by towns with a high quantity of cultivated land holdings surrounding towns with a low 

quantity. Fig. 6 illustrates that the number of towns and villages of this type is small and 

decreasing, from 3% in 2009 to 1.6% in 2019. The theory of spatial polarization states that 

areas of high value surrounded by areas of low value will eventually be assimilated into the 

areas of low value. This means that the number of towns with high-low types will show a 

decreasing trend, year by year, due to spatial polarization. The characteristics of the low-low 

type are the opposite of the low-high type, in that their own high cultivated land holdings are 

surrounded by low cultivated land holdings. This type is only concentrated in the Luoyang 

City area, included the Xujaying Street Office and the Hongshan Street Office, both of which 

are located at a junction between the urban area and the surrounding counties, and both having 

a clear advantage over the urban area in terms of cultivated land quantity. 

3.3 Spatial Regression Model Analysis 

3.3.1 Driving Factor Analysis 

The geographical environment often determines the size and quality of cultivated land within 

a region, while the increase, decrease and transfer of cultivated land is closely related to 

socioeconomic and cultural development and the level of urbanization. Therefore, the spatial 

pattern of cultivated land holdings can be influenced by a number of factors simultaneously. 

When analyzing the drivers of cultivated land shifts within regions, however, traditional 

statistical methods rely on the independent and evenly-distributed nature of the data over the 

study area, which is often not the case in reality. Due to spatial interactions, the spatial 

distribution of geographic data rarely exhibits complete spatial randomness, but is often 

interconnected, which defies the requirement that observed data be independent of each other, 

making spatial autocorrelation an important issue.  

The strong spatial autocorrelation of cultivated land holdings in Luoyang City has been 

discussed above, so this nature of the data must be taken into account when studying the factors 

influencing the evolution of cultivated land. For this work, a binary global spatial 

autocorrelation was calculated using the Geoda tool with the 2009, 2014 and 2019 cultivated 

land holdings as the dependent variables, y, and the corresponding elevation, slope, resident 

population and industrial output as the independent variables, x. The results are shown in Fig. 

7, and the average holdings of cultivated land over the 10-year period 2009–2019 was 

calculated with each of the four driving factors. The holdings were subjected to a local spatial 

correlation analysis to obtain a LISA cluster diagram, as shown in Fig. 8, as a measure of the 

way in which the different influencing factors interact with the cultivated land holdings. 
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Fig. 7.  Results of the Bivariate Spatial Autocorrelation 

 

 
 

Fig. 8.  LISA Maps of the Bivariate Local Spatial Autocorrelation 

3.3.2 Classical Linear Regression Analysis 

Linear regression models are used to describe the relationship between a dependent variable, 

Y, and independent variables, X1, ...., Xn. Classical linear regression analysis is based on the 

method of ordinary least squares (OLS), and is a necessary step before spatial autoregression 

analysis can be carried out. In the results of this model, the regression coefficients indicate the 

extent to which the dependent variable is affected by changes in this particular autovariate, if 

all other conditions hold constant. Both t-statistics and p-values are used to test the significance 

of the effect of the autovariate on the dependent variable. A queen adjacency matrix was 

created in Geoda, followed by the calculation of the OLS regression model, the results of 

which are shown in Table 3. 

(a) DEM             (b) Slope                 (c) Industrial Output         (d) Permanent Population 
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Table 3. OLS Model of Cultivated Land Holdings Quantity in Luoyang City 

Variable Coefficient Std.Error t-Statistics p-value 

Constant 0.540218 0.0575307 9.39007 <0.0001 

DEM 0.000577309 0.000141622 4.07641 0.12702 

Slope -0.0459957 0.00756 -6.08408 <0.0001 

permanent population 1.67492e-007 9.16594e-007 0.182733 0.58522 

industrial output -1.20097e-008 1.43651e-008 -0.836102 0.40424 

 

Table 3 shows that the coefficients for the influencing factor elevation are positive, and 

the coefficients for the influencing factors slope, resident population and gross industrial 

output are negative, indicating that there is a positive correlation between cultivated land 

holdings and elevation, with a negative correlation between slope, resident population and 

gross industrial output. Of all these influencing factors, only slope passed the 1% significance 

test, however, with the coefficient showing that, for every 1% increase in slope, there is a 

0.038% decrease in the amount of cultivated land holdings. In addition, the OLS model results 

list the parameters used to select which spatial autoregressive model is more consistent with 

the objective facts. As can be seen from Table 4, the residual Moran’s I for the classical linear 

regression model was 0.159 and it passed the significance test, indicating that the residuals are 

spatially autocorrelated and that the introduction of a spatial autoregressive model is necessary. 

 
Table 4. Spatial Correlation Test Results 

TEST MI/DF VALUE PROB 

Moran's I(error) 0.159 3.1076 0.00189 

Lagrange Multiplier(lag) 1 13.2549 0.00027 

Robust LM(lag) 1 6.3343 0.01184 

Lagrange Multiplier(error) 1 6.9736 0.00827 

Robust LM(error) 1 0.053 0.81791 

3.3.3 Spatial Autoregressive Model Analysis 

Traditional classical linear regression models assume, in advance, that there is no spatial 

autocorrelation between study data. Spatial autoregression models correct this by 

incorporating spatial dependencies into the regression equation, which compensates for the 

shortcomings of classical measures when it comes to statistical spatial data. Therefore, herein, 

the factors influencing cultivated land holdings in Luoyang City were analyzed, using the 2014 

Luoyang township cultivated land holdings as the dependent variable, and elevation, slope, 

resident population and industrial output as covariates, and the fit of the two models was 

compared. 
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Table 5. SLM Model of Cultivated Land Holdings Quantity in Luoyang City 

 Variable       Coefficient Std.Error t-Statistics p-value 

Lag coverage 0.757795       0.0475766 15.9279 0.0003 

Constant 0.20559 0.0423458 4.85503 <0.0001 

DEM 0.000361937  8.72628e-005  4.14767 <0.0001 

Slope -0.0251521 0.00483055 -5.20689 <0.0001 

permanent population -5.06056e-007 5.5656e-007 -0.909256  0.36322 

industrial output -8.06186e-009 8.7236e-009 -0.924144  0.35541 

 

The regression results of the SLM model based on the Geoda platform calculations are 

shown in Table 5. The regression coefficients and significance calculations show that slope 

and elevation have a significant effect on the amount of cultivated land holdings, with a p-

value of less than 0.01, passing the 1% significance test. The effect of elevation on the 

dependent variable was also significant, with a p-value<0.05, indicating that it passed the 5% 

significance test. The remaining independent variable, resident population, is not significant 

for cultivated land holdings. The coefficient of slope is negative, indicating that the dependent 

variable cultivated land holdings decreased as slope increased in the study area. The absolute 

value of the regression coefficients indicates that slope had the greatest impact on cropland, in 

that, for every 1° increase in slope, the amount of cropland holdings decreased by 0.032% in 

2014, and that areas with excessive slopes are unsuitable for cultivation as cropland. 

For every 10,000 RMB increase in industrial output value, the amount of cultivated land 

holdings decreased by 8.7236e-009 percentage points in 2014. The impact of industrial output 

value reflects the occupation of cultivated land by land used in the process of industrial 

development on the side, and the balance between occupation of and compensation for 

cultivated land will need special attention in the future protection of cultivated land. The 

regression coefficient for elevation is positive for each of the influencing factors, indicating a 

positive effect of elevation on cultivated land holdings, with the amount of cultivated land 

holdings increasing by 0.00036% for every 1-m increase in land elevation in 2014. 
 

Table 6. SEM Model of Cultivated Land Holdings Quantity in Luoyang City 

 Variable       Coefficient Std.Error t-Statistics p-value 

CONSTANT 0.547977 0.0665825 8.23004 <0.0001 

DEM 0.000331962 0.000131954 2.51574 0.01188 

slope -0.0343278 0.00571905 -6.00236 <0.0001 

permanent population -9.04E-07 5.35E-07 -1.68828 0.09136 

industrial output -1.51E-08 8.04E-09 -1.87316 0.06105 

Lambda 0.80694 0.0430819 18.7304 <0.0001 
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Table 6 shows that the coefficients for the influencing factor elevation are positive, while 

the coefficients for the influencing factors slope, resident population and total industrial output 

are negative, indicating that there is a positive correlation between cultivated land tenure and 

elevation, and a negative correlation between slope, resident population and total industrial 

output. Of all the influencing factors, however, only slope passed the 1% significance test, 

with the coefficients showing that, for every 1% increase in slope, there is a 0.034% decrease 

in the amount of cultivated land holdings. 

Scholar Anselin [27] proposed a criterion for choosing a spatial autoregressive model. In 

the spatial correlation test, the significance of the LM(lag) and the LM(error) is first 

discriminated and, if either is significant, the corresponding spatial autoregressive model is 

used. If both are significant, comparison of the robust LM(lag) and robust LM(error) values 

continues. From Table 4, it can be seen that the robust LM(lag) is more significant than the 

robust LM(error) in this case, so the spatial lag model is more in line with the objective facts. 

At the same time, the actual values of the dependent variable and the predicted values of 

the individual regression models were used to generate fit curves, as shown in Fig. 9. These 

show that the spatial lag model prediction (LAG_PREDIC) has a better fit to the actual values 

of cultivated land tenure (Coverage14). 

 
Fig. 9.  Model Prediction Value Fitting Curve 

4. Discussion and Conclusions 

In this study, we analyzed the evolution of the spatial pattern of cultivated land at the township 

scale with the help of a spatial autocorrelation analysis model, based on the spatial and 

temporal data of cultivated land use in Luoyang City in 2009, 2014 and 2019. In addition, 

classical factors, such as elevation, slope, population and industrial output value, were chosen 

as examples to analyze the driving mechanism of the spatial changes in cultivated land in 

Luoyang City. The findings are as follows: 

     (1) In terms of the transfer of cultivated land from the countryside, the main sources of 

cultivated land transferred out were urban(73.27%) industrial and mining(8.21%), and 

transport land(14.35%), while the main sources of land transferred in were grassland(44.41%), 

water and water conservancy facility(18.01%), and forest(10.98%). 

     (2) Calculation of the global Moran I index values(Moran’s I≈0.7134) showed that there 
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was a strong spatial correlation between the amount of cultivated land holdings in Luoyang 

City. From the results of the local spatial autocorrelation, high-high type concentrated in the 

northeastern border areas of Luoyang City, and with a minor expansion during the period 

2009–2019. The low-low type of townships were concentrated in the south of Luoyang City, 

and were heavily influenced by topography and urbanization. The expansion of this type of 

area during the study period mainly occurred in the Luoyang City area, mostly influenced by 

spatial polarization and assimilation by the lower values in the high-low areas. 

     (3) Analysis of the 2014 spatial autoregressive model revealed that, slope and industrial 

output all having a significant effect on cultivated land holdings. The absolute values of the 

regression coefficients indicated the magnitude of the influence of the different factors on the 

amount of cultivated land holdings as being slope > elevation > gross industrial output. 

Whereas elevation had a positive effect, slope and industrial output had a negative effect. 
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